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Abstract. The Landau-Lifschitz pseudotensor is used to calculate the total angular 
momentum of an isolated radiative system in the full (axially symmetric) gravitational 
theory. The result differs from that derived from the Tamburino and Winicour definition 
of angular momentum, which is not based on a pseudotensor and which leads to a constant 
component of angular momentum about the symmetry axis. It is shown that the results 
cannot be brought into agreement by performing a BMS transformation. 

1. Introduction 

It is well known that in the case of a general isolated radiative system all definitions of the 
total energy-momentum 4-vector Pa lead to the same result, namely? 

where M(u,  0,d) is the Bondi mass aspect (Bondi et a1 1962) and Yla(O, 4) are spherical 
harmonics. The uniqueness of the value of Pa is connected with the fact that, as in flat- 
space theories, the translations form a normal subgroup of the BMS group. This is in 
contradistinction to the case of angular momentum. In flat-space theories the angular 
momentum transforms inhomogeneously under a translation, but the inhomogeneous 
part (xfaPbl) has the correct tensorial transformation properties under a homogeneous 
Lorentz transformation. In the full theory one would like to have a quantity with similar 
transformation properties under translations and Lorentz transformations. However, 
the inhomogeneous term does not transform tensorially due to the mixing of momenta 
and supermomenta (Tamburino and Winicour 1966). Of the many definitions of angular 
momentum, we shali be concerned with two : one proposed by Landau and Lifschitz 
(1962) and the other by Tamburino and Winicour (1966), which we shall refer to subse- 
quently as LL and TW, respectively. 

Now Msller (1966) and Goldberg (1963), among others, have shown that the total 
energy-momentum 4-vector defined in terms of a pseudotensor also leads to the ex- 
pression (1 .1 )  for an isolated radiative system. Thus, since pseudotensor definitions and 

t The notation is as follows: small Latin indices run from 0 to 3, Greek from 1 to 3, large Latin from 2 to 3. 
The signature is - 2  and the Bondi coordinates are (xo, x',  x2, x3) = (U, r,  e,+), Derivatives with respect to 
U, r and 0 are denoted by X,, X, and X, respectively, although on some occasions commas are used in 
addition for clarity. Symmetrized and anti-symmetrized expressions do not include a numerical factor, 
eg x,,,, = x,, + x,, ' 
6 
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other definitions both lead to the same result for the energy-momentum 4-vector, for 
radiative systems, the question arises : do pseudotensor and other definitions result in 
the same value for the angular momentum? In this paper we use the LL pseudotensor 
to compute an expression for the angular momentum and compare it with the equivalent 
expression derived from the TW definition. We conclude that the results do not agree 
and cannot be brought into agreement by performing a BMS transformation. We have 
chosen the LL pseudotensor since it alone satisfies certain criteria discussed by Goldberg 
(1958); in particular its symmetry leads to a natural definition of angular momentum. 
The choice of the TW definition rests on the general belief that it gives the 'correct' 
answer. 

All calculations are carried out in the axi-symmetric case (see appendix 1) for which 
an invariant axis of rotation is defined. This also corresponds to the case most frequently 
considered in the literature. The formalism largely follows that of Bondi et a1 (1962). 
We choose as our metric the form of Sachs' metric (Sachs 1962) due to van der Burg 
(1966), the contravariant form of which is 

0 0 \ 
sin 6 

." 

-(cosh 26) e -2y  sinh 26 
r2 r2 sin 6 

\ 

\ *  . -(cosh 26) e2Y 
r2  sin28 

where in the axi-symmetric case /I, y, 6, U, V, Ware all functions of U, r, 8 only. 

2. The Landau-Lifschitz definition 

The LL energy-momentum complex T~~ is given by 

T~~ = (-g)(TUb+tab) (2.1) 

where Tab is the energy-momentum tensor and tab is the LL pseudotensor. In terms of the 
metric, 

1 
1671 

Tab = -[( - g)(g"bg'd - gacgbd)],cd 

which is clearly symmetric, and by (2.1) defines tab in vacuo. If we set 

(2.3) p a b c  = xlaTblc 

we obtain the conservation law 

, E  = 0 p a b c  

and thus we can define the angular momentum LLMab by 

LLMab = PabcdSc s (2.4) 
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where, in the radiative case, the integration is over a null hypersurface. The integral 
can be converted using Stoke's theorem to an integral over Z, a 2-surface on 9' (future 
null infinity). 

3. The calculation 

The quantity LLMab was calculated in the radiative case by employing a method due to 
Merller (1966) which consists essentially of performing calculations in terms of a set of 
four quantities ( p a ,  n,, ma, I,) which asymptotically form a quasi-orthonormal tetrad 
of one null and three space-like vectors. In this section we use the following notation : 

Bondi-Sachs coordinates 
Cartesian coordinates 

( t ,  x ,  y,  z )  = (U + r,  r sin 8 cos 4, r sin 8 sin 4, r cos 8). 

(xO, XI, x2, x3) = (U, r,  8, 4) 
(XO,  X I ,  x 2 ,  x 3 )  = ( t ,  x, y, z )  

where 

Then the tetrad vectors are defined to be 

p a  = (1, -sinOcos4, -sinOsin4, -cos8) 

n, = (0, sin 8 cos 4, sin 8 sin 4, cos e)  
ma = (0, cos 8 cos 4, cos 8 sin 4, -sin 8) 

la  = (0, -sin 4, cos 4,O). 
Raising the indices with the Minkowski qab = diag(1, - 1, - 1, - 1) gives rise to the 
orthonormality relations 

nuna = mama = /"la = -napa = p a p z  = nzn, = m"m = /"/ = -n"p = 1 (3.2) 

(3.3) 
From the fact that the transformation matrices aXa/axb and Bxa/aXb can be expressed 
simply in terms of the tetrad vectors, we can now compute the Cartesian derivative of 
any function $ = $(U, r ,  8,4), by using 

with all other products zero ; from which we obtain the completeness relation 

q a b  = p a p b  + p ( a n b )  - mamb - lalb ' 

Defining the quantities 
1 6 ~ 1 " ~ ' ~  = [( -g)(gabgcd-gacgbd)] = 8. ab 8. cd - 

where gab is the metric density, and 
p b c  = j.obcd,d 

it is straightforward to show that 

xIaTblc = (XLahbIcd + A a b c d ) , d .  

Then applying Stoke's theorem to (2.4) we find 

LLMab = 4 $av(x[ahblcd+ Ilabcd)dS:d (3.8) 
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where 
dS,*, = &abed dSCd 

is the dual of dSab. Taking dVto be Z, (3.8) becomes 

LLMab = lim s' p' (xfahbloa + Poub)nau2 sin 0 d0 dqi (3.9) 
0-m 0 0 

The evaluation of this expression is facilitated by computing the two expressions 

laoabnl (3.10) 

p u n a  = (laOolbn 1 ) ,b - l a O a b  (%),b (3.1 1) 

where the contraction with n, considerably reduces the number of terms occurring. 
The required parts of the metric density of the metric (1.2) are 

(3.12) 

and 

go" = 6; + (1 - Vr- ' ) p a  - Urma - Wrl" 
and 

= pa& - Vj- 'p"p"- Urp(ama) - Wrp("p)-cosh 26 e-2y+ZPmamQ 

-cosh 26 e2y+2p111a+ sinh 26 e2Pm(u/a). (3.13) 

Inserting these expressions into (3.9) and making repeated use of the orthonormality 
relations (3.2) and equation (3.3) we find that the axial symmetry leads directly to 

(3.14) 

The remaining components involve the asymptotic expansions of the arbitrary 
functions in the metric (1.2) (see appendix 2). A final requirement is that the metric be 
regular on the axis of symmetry. Two of the conditions for this are that y sin-2 0 and 
6 sin-20 are regular functions of cos 8 as sin 8 + 0. This implies the following limiting 
behaviour on the news functions c and d :  

LLMol = LLMo2 = LLM03 = LLM23 = 0. 

as sin 0 -+ 0. 
c v k(u)sin26 
d E j ( u )  sin26 

(3.15) 

These conditions are called the regularity conditions. A lengthy calculation eventually 
leads to the expressions 

LLM03 = up3 -1 Jon [3N - 2(cc2 + dd , ) ]  sin20 do, 

and 

LLM'2 = [3P+2(c2d-cd,)] sin26d6. 

4. The Tamburino-Winicour definition 

(3.16) 

(3.17) 

We now turn to the angular momentum definition of TW, who start by defining a flux 
linkage 

L,(c) = (c[a;bl- ~ ; c k [ a m b l )  dSab (4.1 ) 
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which they arrive at by modifying the integral form of a covariant flux conservation law 
due to Komar in which the second term in the above integrand is absent. In particular if 
5" is a global Killing field the above definition reduces to Komar's and leads to a con- 
servation law. However, in general, a space-time does not possess a global Killing field, 
but if the system is isolated the space-time will possess an asymptotic Killing field. In 
the radiative case the asymptotic symmetry group is the BMS group. TW use the flux 
linkage to define the total angular momentum TWMab in terms of a conformal Bondi 
metric gab, related to the physical metric g a b  of (1.2) by 

gab = r2gab ,  (4.2) 

and also in terms of the descriptors ( a  of the asymptotic symmetry group. They obtain 
the expression 

where the colon represents two-dimensional covariant differentiation with respect to the 
polar metric gAB and where 

NA(u, 8, 4) = lim ( -$gIA,, l ) .  
r - 0  

(4.4) 

In the axi-symmetric case we have a global Killing field and the descriptor corresponding 
to this symmetry generates the component 

In addition the descriptor corresponding to a boost along the symmetry axis generates 
the component 

TWMo3 = up3 +* 3N sin2# de. Jon (4.6) 

All other components of TWMab are zero. 

conditions we readily verify that the retarded time derivative of (4.5) 
If we now use the supplementary conditions (see appendix 3) and the regularity 

so that TWMlZ is, in fact, a constant. 

5. Comparison of results 

Collecting the results of the last two sections together, the only non-vanishing component 
of the space-like part of the total angular momentum in the axi-symmetric case is the 
component about the axis of symmetry, which in each case is 

LLM'2 = constant+a ( c 2 d - d 2 c )  sin28d# 

TWM'2 = constant 
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where the constant is 

loff [3P +(c,d - d2c)]  sin2B de. (5.3) 

Thus the space-like part of the angular momentum is conserved in the TW case, but 
changes in the LL case unless the quantity 

I = Jeff (c,d - d,c) sin2B dB (5.4) 

is a constant. This will be a constant in particular if either the news (co + ido) vanishes, 
or c or d vanishes, or c = d .  

The TW definition would appear to be the more physically reasonable and is in 
agreement with the analogous result in flat space theories, namely that axial symmetry 
leads to a constant component of angular momentum about the symmetry axis. How- 
ever, it might be thought possible to remove the extra term I in the LL result by a BMS 
transformation. We shall attempt to show that this is not possible. In passing we might 
add that the definition of angular momentum based on multiple moments proposed by 
Newman and Unti (1965) also leads to a result differing from the constant (5.3) by pre- 
cisely the term I .  

We start by considering a BMS transformation which, in the case of axial symmetry, 
(preserving the r#~ independence) is given on 9+ by 

U = K- ' i i+a(@ 

8 = 2 tan-'(e-" tan io) 
4 = $ + P  

where p = constant, v = constant, K = cosh v +cos 0 sinh v, and a = a(@. The 
functions c and d transform under such a transformation according to 

C 

K 
and 

d a = -  
K '  

We wish to prove that for all choices of c(u, 8) and d(u, 0) subject to the regularity con- 
ditions (3.15) there is no BMS transformation for which, in the new coordinate system, 

i,6 = 0. 

We shall do this by constructing explicit counter examples. Since any BMS transforma- 
tion can be uniquely decomposed into a homogeneous Lorentz transformation and a 
supertranslation (in a definite order), we need only consider the transformation proper- 
ties of I ,o  under the action of each subgroup separately. 

5.1.  Homogeneous Lorentz transformation: p = a = 0, v # 0 

Then 
sin 8 sin28K' 

K K (c2d-d2c)---de +Ls," [(cdo-dco)u]- do. (5 .5)  
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If we choose 

c = ep" sin26, d = eqUsin2B (P # 4 )  

where p and q are constants, then the coefficient of id in (5.5) is 

is clearly positive, then so is the integrand of (5.6) and hence the coefficient of U does not 
vanish for the given choice of c and d ;  in which case neither does j , ~ .  Of course the ro- 
tation a = v = 0, p # 0 leaves I,, invariant. 

5.2. Supertranslation : p = v = 0,  a # 0 

Then 

a n  [ (cd,  - dc,)a'] sin% dB = Jo (c2d - d , c )  sinZO de  - 

+ 9 Jon [ ( E "  cot 6' -a' cosec*O - a"')d, - (a'd,, + d o 2 )  

x (a' cot B -a") ]  sin20 do. (5.7) 

If we choose 

c = ep" sin2& d = ep" cos 8 sin26 

where p is a constant, then the coefficient of e2p" in (5.7) is 

Jon sin78 de  

which is clearly positive, and so again 1,a does not vanish. Thus the non-equivalence of 
(5.1) and (5.2) has been demonstrated. 

6. Two important subcases 

If we impose the additional condition of azimuth reflection invariance (see appendix 1) 
then the resulting metric is Bondi's metric (Bondi et a /  1962). This reduction is accom- 
plished by setting Wand 6 and hence in particular d and P to zero. Equations (5.1) and 
(5.3) then immediately lead to the vanishing of the space-like part of the angular momen- 
tum, as we should expect, since this condition corresponds intuitively to a non-rotating 
source. 

Another important subcase, not often considered in the literature, is that of equa- 
torial reflection invariance (see appendix l). This condition leads to the following 
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Inserting these conditions into (l.l),  (3.16) and (4.6) we find that the total momentum 
( P 3 ) ,  momentum recoil ( P 3 , 0 )  and the non-space-like component of the angular momen- 
tum (LLM03 or &Io3) all vanish. This is again what we might expect intuitively since 
equatorial reflection invariance suggests there should be no net motion along the 
symmetry axis and the 'centre of mass' of the system should appear to a distant observer 
to be at the coordinate origin (in as far as this makes sense). Of course, under the same 
conditions, the mass and angular momentum are not zero in general. We mention that 
perhaps the simplest physically interesting case of a radiating system is that in which the 
external field is axi-symmetric and possesses both azimuth and equatorial reflection 
symmetry (intuitively we might think of a non-rotating pulsating ellipsoid). In this case 
all quantities vanish except the mass (Po)  and the mass-loss (Po,o). 
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Appendix 1. Symmetry definitions 

We start by tying down polar coordinates (x2 ,  x3) = (0,4) on Z in a standard manner 
and then extending to a Bondi coordinate system (U, r,  O , + ) .  Then using this coordinate 
system a space-time possesses : 

(i) axi-symmetry if 5" = 6: is a Killing vector field, ie generates an infinitesimal iso- 
metry. In coordinate terms this requires 

Such a metric defines invariantly an axis of symmetry which consists of those points left 
(point-wise) fixed under the action of the infinitesimal isometry. (An axi-symmetric 
space-time can be defined in a coordinate independent manner as one admitting a 
space-like Killing vector field whose orbits are topological circles). 

(ii) azimuth rejection inuariance if in addition to (i) the transformation 
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is an isometry. In coordinate terms this requires 

g o 3  = g 1 3  = g 2 3  = O. 

(In coordinate-independent terms the space-time in addition to (i) admits a (non-trivial) 
isometric action of Z 2  leaving a hyperplane containing the axis of symmetry pointwise 
invariant .) 

(iii) equatorial rejection invariance if in addition to (i) the transformation 

xo + X ’ O  = xo 

x1 + x’l = x1 

x2 + X I 2  = n - x z  

x3 + x‘3 = x3 

is an isometry, ie 

(The space-time in addition to (i) admits a non-trivial isometric action of Z, leaving a 
hyperplane normal to the axis of symmetry pointwise invariant.) 

Appendix 2. Asymptotic expansions 

The asymptotic expansions of the arbitrary functions occurring in the metric (1.2), to 
the required order, are (in the axi-symmetric case) 

y = c ( ~ , e ) r - ’ + O ( r - ~ )  

6 = d(u, 6 ) r - l  + c ~ ( r - ~ )  

p = - % ( ~ ~ + d ~ ) r - ’ + o ( r - ~ )  

I/ = r - 2 M ( u ,  B ) + O ( r - ’ )  

U =  - ( c  + 2 c  cot e ) r - , + [ 2 N ( u ,  e ) + 3 ( ~ ~ , + d d ~ ) + q ~ ~ + d ~ )  cot e y 3  + o ( ~ - ~ )  
W =  - ( d  , + 2 d  cot O)r-’+[2P(u,  B ) + 2 ( c , d - ~ d , ) ] r - ~  +O(r-4). 

Appendix 3. Supplementary conditions 
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and 

A = -+cot U (d2+2dcot e). (:e 1 
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